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Abstract— Finding an alternative way to replace the magnetic
compass to determine the robot heading angle indoor is always
a challenge in the robotics society. This brief proposes a struc-
turally simple yet efficient nonmagnetic heading determination
system, which can be used in the planar indoor environment
with abundant ferromagnetic and electromagnetic interferences,
by the combination of gyroscope and vision. The gyroscope is
utilized to perceive the yaw rate, whereas a downward-looking
camera is used to capture the prelaid auxiliary strips to acquire
the absolute angle of the robot heading. Due to the existence of
pseudomeasurement, varying noise statistical characteristics, and
asynchronization between state propagation and measurement,
the existing Kalman filters cannot be applied to fuse the gyro-
scopic and visual data. Therefore, a novel fusion algorithm named
pseudomeasurement-resistant adaptive asynchronous Kalman fil-
ter is proposed, which is experimentally verified to be efficient
in the environment with various interferences.

Index Terms— Gyroscope, heading determination system
(HDS), Kalman filter, magnetic compass, vision.

I. INTRODUCTION

THE recent decades have witnessed the development of
wheeled mobile robots and their applications in military,

rescue, service, transport, warehousing, and so on. One of the
fundamental problems in mobile robotics is mobility, which
enables robots to move from location to location [1]. To realize
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the location-to-location transferability, the robot should be able
to efficiently control its wheel rotational rates to track the
planned route [2]. During the tracking control, the robot should
accurately obtain its pose (i.e., the 2-D coordinate and heading
angle) in real time, thus forming a closed-loop system [3]. The
localization problem has already been intensively investigated,
while there is still room in the study of heading determination
system (HDS), which will be discussed in this brief.

The robot localization can be achieved by resorting to
various measures, such as satellite, Wi-Fi, vision, lidar, but
the sensor to perceive the robot heading is almost unique, that
is, magnetic compass [4]. The magnetic compass is usually
realized by a magnetometer, which perceives the magnetic
intensity along different axes, and thus, it is able to pro-
vide the heading angle relative to the north. Apart from the
magnetic compass, the heading angle can be determined by
a localization system. In outdoor scenarios, the dual-antenna
GPS is able to calculate the robot heading by processing the
baseline between the main antenna and the second one [5]. The
similar HDS can be implemented by Wi-Fi localization in the
indoor environments. As another nonmagnetic compass, one
can use the vision, whether on-board or off-board, to capture
the environmental or robotic markers and then determine the
robot heading angle from the capture images. The state-of-
the-art work related to the mentioned three HDSs is as follows.

The magnetic compass is generally considered to originate
in the ancient China as early as the 206 B.C., so it has
been used as a device to find the direction since the ancient
times [6]. By perceiving the geomagnetic intensity, the mag-
netic compass could calculate the direction with respect to the
north. However, in the environment with a large body of ferro-
material and electromaterial, the distorted magnetic field gives
rise to the inaccuracy and unreliability in magnetic compass.
In order to eliminate the errors rendered by hard- and soft-iron
distortion magnetic field, we can calibrate the magnetometer
in advance, by means of the vector compensation or ellipsoidal
calibration [7]. The time-varying and unpredictable magnetic
interference, however, limits the real-time application in the
heading measurement of a mobile robot. A preferred solution
is integrating a gyroscope, which is complementary to the
magnetic compass. In [8], the regular and irregular noises of
a magnetometer are filtered by a fuzzy-based compensator
and the Kalman filter, respectively. Due to the insensitiv-
ity to magnetic interference, the gyroscope can be used to
isolate the anomalies in the magnetometer readings, thus
avoiding the pollution to heading estimation [9]. The afore-
mentioned magnetometer-involved magnetic HDSs are usually
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Fig. 1. Illustration of the proposed inertial-visual heading estimation system.
The polygon in blue and the two meshed rectangles in yellow represent the
robot body and its wheels. A gyroscope (green square) is mounted on the
robot body with its axis vertical to the floor. The green dashed quadrilateral
represents the visual field of the downward-looking camera. The red thicker
lines, which are parallel to the X-axis, represent the auxiliary strips.

used in the scenarios without serious geomagnetic distortion.
However, in some scenarios, especially the industrial environ-
ment, magnetic compass is extremely unwelcome and thus
should be avoided [1].

Apart from the magnetic compass, the nonmagnetic HDS
has attracted more and more attention in the current decade.
The location-to-heading method implemented by GPS is called
GPS compass, which is frequently used in outdoor vehi-
cles [10]. The vehicle is desired to be moving as straightly as
possible when using GPS compass to determine its heading,
and otherwise, a large body of errors occurs. Therefore, such
a method is not reliable if the vehicle moves irregularly [11].
Meanwhile, the nonline-of-sight communication may degrade
the localization system and further reduce the accuracy of
GPS compass. Another promising way to obtain the heading
information is vision. With a dedicated colored marker sticking
on the robot roof, one can use the off-board vision to monitor
the robot and extract the robot pose from the captured image
sequence [12]–[14]. However, the method fails if the robot
runs out of the visual field or a table blocks the line of sight.
On the contrary, the on-board vision utilizes a camera directly
mounted on the robot to capture the landmarks distributed
in the environment; and then, the robot location and heading
could be worked out. The quick response codes are the most
frequently used landmarks [15], which has received a great
achievement in the warehousing robots [16].

In this brief, we propose a novel nonmagnetic way to
determine the robot heading angle, which does not suffer from
ferromagnetic and electromagnetic interferences. The system
is shown in Fig. 1. The floor of the area that the robot operates
should be laid with some auxiliary strips in advance. The
floor should be flat, but moderate inclination and slippery are
acceptable. All strips are parallel to the X-axis and equally
spaced. The strips’ color is optional, but complementary to
the floor color in hue. The gyroscope is mounted on the robot
with its axis perpendicular to the floor, thus perceiving the
pure yaw rate of the robot. An on-board downward-looking

camera captures the floor images.1 Because all the auxiliary
strips are parallel to the X-axis, the relative angle between the
robot heading and X-axis could be extracted from the floor
images. By adjusting the camera pose, the area of visual field
could be enlarged, and therefore, it can be guaranteed that the
vision could capture one auxiliary strips at least.

In order to estimate the robot heading, we first establish the
relationship from the angle of the captured strips in the image
framework to the heading angle in the world framework, which
enables the nonmagnetic way to perceive the absolute angle of
the robot heading. However, the fusion of gyroscopic yaw rate
and visual heading measurement is not a straightforward work
by applying the Kalman filter, which is due to the following
issues.

1) Because of the unknown direction of the auxiliary strips,
the visual heading measurement outputs two values,
a real measurement and a pseudo one.

2) Because of the camera shake and illumination variation,
the noise variances, particularly the measurement noise
variance, change slowly.

3) Because the visual heading measurement is
time-consuming and resource-intensive, the gyroscopic
state propagation proceeds at a higher rate than the
visual measurement, which causes the asynchronization
issue.

Although many modified Kalman filters have been proposed
(e.g., robust Kalman filter [17], switch Kalman filter [18],
and adaptive Kalman filter [19]), there does not exist such
a Kalman filter capable of solving the aforementioned three
issues, to the best of our knowledge. Therefore, a novel
fusion algorithm named pseudomeasurement-resistant adaptive
asynchronous Kalman filter is proposed in this brief.

In the rest of this brief, the models of the gyroscopic
measurement of yaw rate and the visual measurement of robot
heading will be presented in Section II, and the proposed
pseudomeasurement-resistant adaptive asynchronous Kalman
filter applying to the inertial-visual fusion will be stated
in Section III. In Section IV, the real-world experiment is
exhibited to verify the effectiveness of the inertial-visual HDS.
This brief is concluded in Section V.

II. MODELING OF SENSORS

A. Gyroscopic Measurement of Yaw Rate

Gyroscope is a device sensing the rotational rate of a rigid
body. If considering all error items, the model could be very
complicated, so the model precision and complexity should be
compromised. Because the systematic uncertainties could be
precalibrated by experiments, only the nonsystematic items
will be considered to establish a feasible gyroscopic error
model [20]. A large body of experiments have demonstrated
that the angular random walk (ARW) and angular rate ran-
dom walk (ARRW) affect the gyroscopic accuracy signifi-
cantly [21]. The ARW reflects the characteristics of white
noise in the angular rate, so it can be seen as a fast-changing
noise. Similarly, the ARRW reflects the characteristics of white

1The strips interval, camera’s height, and posture could be adjusted jointly to
guarantee that the camera captures at least one auxiliary strip at any location.
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noise in the angular acceleration, so it is a slow-changing
noise. According to the abovementioned analysis, we have the
model that relates the real yaw rate to the gyroscopic readings,
that is,

δg,k = δk + bg,k + ng,k (1)

where δk denotes the robot yaw rate, δg,k denotes the gyro-
scopic readings, and bg,k and ng,k denote the ARRW and ARW
error, respectively, all at sampling point k. The fast-changing
noise ng,k is modeled as Gaussian noise, i.e., ng,k ∼ N (0, Qn).
Meanwhile, the slow-changing noise bg,k is modeled as a
one-order Markov–Gaussian stochastic process, that is,

bg,k+1 = γ bg,k + wg,k (2)

where wg,k ∼ N (0, Qw) is the Gaussian noise and γ ∈
[0, 1] denotes the correlation coefficient, which indicates the
correlation between two successive states. The correlation
gets stronger with γ getting larger. Because the ARRW error
changes very slowly, we often set γ = 1 empirically.

B. Visual Measurement of Heading

The visual heading measurement is implemented by the
monocular vision with the aid of floor auxiliary strips. The
process contains the following steps.

1) Image Preprocess: This step aims to extract the central
lines of the auxiliary strips. First, the colored floor image is
converted into a binary image with reserving the auxiliary
strips, by using thresholding segmentation. Second, the binary
image is further processed by using mathematical morphology
(e.g., hole filling, skeleton extraction, and burring algorithm),
thus obtaining the central lines of the auxiliary strips.

2) Line Detection: This step aims to acquire the parameters
of the auxiliary strips in the U–V framework by using the
Hough transform and perspective transform. The auxiliary
strips are parameterized by

u cos ρ + v sin ρ = r (3)

where r ∈ [rmin, rmax] denotes the vertical distance from the
origin of the U–V framework to the strip’s central line and
ρ ∈ [−π/2, π/2) denotes the angle from the U -axis to the
vertical line. For a μ × ν image, we have rmax = −rmin =
(μ2 + ν2)1/2. The parameters (r, ρ) can be obtained by using
the Hough transform.

3) Perspective Transform: Because the camera’s optical
axis may not be vertical to the floor, we should project
the captured floor image onto the floor plane. Define the
perspective transformation function

(ū, v̄) = P{(u, v)} (4)

where (u, v) is a point in the U–V framework and (ū, v̄) is a
point in the Ū–V̄ framework. More details of the perspective
transform can be found in [22]. Now, we are in the position
to convert (r, ρ)-lines into (r̄ , ρ̄)-lines in the Ū–V̄ framework.
Find two points on the (r, ρ)-line, and calculate

(ū1, v̄1) = P{(u1, v1)} (5a)

(ū2, v̄2) = P{(u2, v2)} (5b)

Fig. 2. Illustration of the relation of ρ̄ and θ in Situation 1.

where (ū1, v̄1) and (ū2, v̄2) are two points on the (r̄, ρ̄) line.
Substituting them to (3) yields

ū1 cos ρ̄ + v̄1 sin ρ̄ = r̄ (6a)

ū2 cos ρ̄ + v̄2 sin ρ̄ = r̄ (6b)

and consequently, we have

ρ̄ =

⎧⎪⎨⎪⎩
arctan

ū1 − ū2

v̄2 − v̄1
, when v̄1 �= v̄2

−π

2
, when v̄1 = v̄2

(7)

which realizes the conversion from the U–V framework to
Ū–V̄ one.

4) Heading Acquirement: This step aims to transform ρ̄
to θ . We analyze the situations that the robot heading θ lies
in (0, π/2], (π/2, π], (π, 3π/2], and (3π/2, 2π], respectively.
Situation 1 (i.e., (0, π/2]) is shown in Fig. 2. It is observed
that the camera captures two parallel auxiliary strips that are
represented by (r̄1, ρ̄1) and (r̄2, ρ̄2). Since all auxiliary strips
are parallel to the X-axis, ρ̄1 equals ρ̄2 if without considering
the measurement error, and therefore, it is sufficient to infer θ
with the aid of only one auxiliary strip. Select one of (r̄i , ρ̄i )
if there are multiple auxiliary strips, and ignore the subscript
of ρ̄. It is easy to derive

θ(c1) = −ρ̄ (8)

where θ(c1) ∈ (0, π/2]. Furthermore, for Situations 2–4,
we have

θ(c2) = −ρ̄ + π (9a)

θ(c3) = −ρ̄ + π (9b)

θ(c4) = −ρ̄ (9c)

where θ(c2) ∈ (π/2, π], θ(c3) ∈ (π, 3π/2], and θ(c4) ∈
(3π/2, 2π]. Combining (8), (9a), (9b), and (9c) together yields

θ ∈ {
θ(c1), θ(c2), θ(c3), θ(c4)

} = {−ρ̄,−ρ̄ + π} (10)

and consequently, we have

θ ∈

⎧⎪⎨⎪⎩
{−ρ̄,−ρ̄ + π}, if ρ̄ ∈

[
−π

2
, 0

)
{2π − ρ̄,−ρ̄ + π}, if ρ̄ ∈

[
0,

π

2

) (11)

which can be used to derive θ from ρ̄.
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As seen from the earlier discussion, the visual heading
measurement is time-consuming and resource-intensive, so it
cannot synchronize with the gyroscopic heading estimation. As
k = 1, 2, . . ., we define sampling point t� ∈ {1, 2, . . .}, where
� = 1, 2, . . . Define ρ̄ at sampling point t� by ρ̄t� and the
measurement of ρ̄t� by ρ̄c,t� . Since the measurement contains
the additive noise, we have

ρ̄c,t� = ρ̄t� + nc,t� (12)

where nc,t� denotes the measurement noise. There are many
factors causing the measurement noise, such as environmental
illumination, misalignment, and camera shake, so the noise
statistical characteristics may change with variation of these
factors. For example, when the robot enters the area with-
out sufficient light, the performance of image preprocess
may degrade, thus causing a heavier noise. Most frequently,
the variation is reflected in the noise variance, so we assume
nc,t� ∼ N (0, Rt� ).

Finally, we obtain the visual heading measurement Θc,t� that
is formulated as

Θc,t� =

⎧⎪⎨⎪⎩
{−ρ̄c,t� ,−ρ̄c,t� + π

}
, if ρ̄c,t� ∈

[
−π

2
, 0

)
{
2π − ρ̄c,t� ,−ρ̄c,t� + π

}
, if ρ̄c,t� ∈

[
0,

π

2

) (13)

which can be rewritten as

Θc,t� =
{{

θt� + nc,t� , θt� + π + nc,t�

}
, if θt� ∈ [0, π){

θt� + nc,t� , θt� − π + nc,t�

}
, if θt� ∈ [π, 2π).

(14)

It is observed that Θc,t� contains two measurements, a real
one θ(†)

c,t� equalling θt� + nc,t� and a pseudo one θ
(
)
c,t� equalling

θt� ± π + nc,t� . Hence, the robot heading estimation system
must have the ability to recognize the pseudomeasurement and
isolate it.

III. INERTIAL-VISUAL FUSION

A. Problem Formulation

The inertial-visual fusion problem is based on

θk+1 = θk + T δk (15a)

δg,k = δk + bg,k + ng,k (15b)

bg,k+1 = bg,k + wg,k (15c)

Θc,t� =
{{

θt� +nc,t� , θt� +π+nc,t�

}
, if θt� ∈ [0, π){

θt� +nc,t� , θt� −π+nc,t�

}
, if θt� ∈ [π, 2π).

(15d)

Modifying (15a) to (15d) by state argumentation yields

ϑk = Fϑk−1 + Bδk−1 + Cwk−1 (16a)

θc,t� =
{{

Hϑt� + nc,t� , Hϑt� + π + nc,t�

}
, if θt� ∈ [0, π){

Hϑt� + nc,t� , Hϑt� − π + nc,t�

}
, if θt� ∈ [π, 2π)

(16b)

where

ϑk =
[

θk

bg,k

]
, wk =

[
ng,k

wg,k

]
∼ N (0, Q), Q =

[
Qn 0
0 Qw

]
F =

[
1 −T
0 1

]
, B =

[
T
0

]
, C =

[−T 0
0 1

]
, H =

[
1
0

]′
.

It is observed that the measurement and state propagation
are not in synchronization when t� �= �. This asynchronization
(or multirate) problem is caused by the resource-intensive
visual heading measurement. First, the visual heading mea-
surement is accomplished by image acquisition and the sub-
sequent image processing operations, so it costs much more
time than the yaw rate measurement that is accomplished
by a simple wired data communication with the gyroscope.
Second, even the vision and gyroscope could synchronize in
hardware, and we may decrease the frequency of the visual
heading measurement for the purpose of reducing resource
consumption.

The synchronized model of (16a) and (16b) is

ϑt�+1 = Ft�ϑt� + dt� + ωt� (17a)

θc,t� =
{{

Hϑt� + nc,t� , Hϑt� + π + nc,t�

}
, if θt� ∈ [0, π){

Hϑt� + nc,t� , Hϑt� − π + nc,t�

}
, if θt� ∈ [π, 2π)

(17b)

where Ft� = Fς� = [
1 −ς�T
0 1

]
, ς� = t�+1 − t�,

dt� = ∑t�+1−1
i=t�

Ft�+1−i−1 Bδi , and ωt = ∑t�+1−1
i=t�

Ft�+1−i−1Cwi

is a 2-D Gaussian noise with the covariation Q =∑t�+1−1
i=t�

Ft�+1−i−1C Q(C Ft�+1−i−1)′.
The problem is to develop an inertial-visual heading esti-

mation algorithm based on the gyroscopic readings {δk} and
visual measurements {θc,t�}. It cannot be easily solved by
using a standard Kalman filter because of the following three
issues: the existence of pseudomeasurement, varying noise
statistical characteristics, and asynchronization between state
propagation and measurement.

B. Estimation Algorithm

The estimation algorithm contains six steps: initialization,
a priori estimation, visual measurement trigger, real measure-
ment recognition, a posterior estimation, and noise covariance
estimation.

1) Initialization: The initial a posterior estimation ϑ̂0

should be determined at first, where ϑ̂0 = [θ̂0, b̂g,0]′. The initial
heading θ̂0 is measured artificially, and the initial gyroscopic
bias is obtained by averaging the gyroscopic readings in
stationary state. The initial a posterior error correlation P̂0

is initialized by a diagonal matrix with appropriate values.
2) A Priori Estimation: Suppose that ϑ̂k−1 has been

obtained, then the a priori estimates are achieved by

ϑ̃k = Fϑ̂k−1 + Bδk−1 (18a)

P̃k = F P̂k−1 F ′ + C QC ′ (18b)

where ϑ̃k and ϑ̂k denotes the a priori and a posterior estima-
tions of ϑk , respectively, and P̃k and P̂k denotes the a priori
and a posterior estimation error covariances at sampling point
k, respectively.

3) Visual Measurement Trigger: The gyroscopic bias (i.e.,
ARRW) is included in the augmented state as shown in (16a),
so it can be estimated and removed in the a priori estimation
process, which means that the gyroscopic heading estimation
is relatively accurate in short term. Hence, to reduce the
computational burden, the a priori estimation is not necessary
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to be corrected at each sampling point until the error variance
of heading estimation gets larger than a given bound. The
visual measurement is triggered at

P̃k < P̄ or H
(
F P̃k F ′ + C QC ′)H ′ + R <

(
π

2β

)2

(19)

where β is an integer not less than 3. The function of the first
inequation in (19) is to limit the heading estimation error by
the upper bound P̄ , whereas the second inequation prevents
the real measurement at the next sampling point from being
unrecognizable. The discussion of the recognizable condition
of real measurement can be found in Appendix A. According
to [23], P̃t� and P̂t� converge to time-invariant matrices for
a completely observable and completely controllable system.
Therefore, the event-based trigger designed earlier will trig-
ger the visual measurement in equal intervals of time after
convergence.

4) Real Measurement Recognition: If the visual heading
measurement is triggered at k, the real measurement should
be recognized. Calculate the θ

(1)
c,k - and θ

(2)
c,k -based innovations

φ
(1)
k and φ

(2)
k by

φ
(1)
k = θ

(1)
c,k − H ϑ̃k (20a)

φ
(2)
k = θ

(2)
c,k − H ϑ̃k (20b)

where θ
(1)
c,k and θ

(2)
c,k are the elements in Θc,k . The real mea-

surement can be picked out by

θ
(�)
c,k =

{
θ

(1)
c,k , if

∣∣φ(1)
k

∣∣ <
∣∣φ(2)

k

∣∣
θ

(2)
c,k , otherwise

(21)

where θ
(�)
c,k denotes the recognized real measurement. In

Appendix A, we show the recognizable condition of the real
measurement, in which θ

(�)
c,k = θ(†)

c,k holds in an extreme high
probability.

5) A Posterior Estimation: If the visual measurement is not
triggered, which means that the state propagation and mea-
surement are not synchronized, then the a posterior estimates
equals the a priori estimates, that is,

ϑ̂k = ϑ̃k (22a)

P̂k = P̃k (22b)

otherwise, the a posterior estimate is given by

Kk = P̃k H ′[H P̃k H ′ + R̂k
]−1

(23a)

ϑ̂k = ϑ̃k + Kk

[
θ

(�)
c,k − H ϑ̃k

]
(23b)

P̂k = [I2 − Kk H ]P̃k (23c)

where Kk denotes the filtering gain at time k, and I2 denotes
the 2-D unit matrix.

6) Noise Covariance Estimation: Define another time
stamp tτ

� where τ is set as 0 initially. When ς� = ς�−1

and ς�−3 = ς�−4, we increase τ by 1, calculate ∇Θ
(�)
c,t� =

θ
(�)
c,t� − 2θ

(�)
c,t�−1

+ θ
(�)
c,t�−2

− T δ̄g,t�−1 + T δ̄g,t�−2 where δ̄g,t� =∑t�+1−1
i=t�

δg,i , and assign the value of ∇Θ
(�)
c,t� · ∇Θ

(�)
c,t�−2

to Itτ
�
.

Finally, the measurement noise variance is estimated by

R̂tτ
�

= R̂tτ−1
�

+ 1

n

(Itτ
�

− Itτ−1−n
�

)
(24)

Algorithm 1 Pseudomeasurement-Resistant Adaptive
Asynchronous Kalman Filter

Fig. 3. Description of the experimental robot.

where τ > n. At the starting phase, there may not be a
sufficient number of Itτ

�
, i.e., τ ≤ n, and thus, the measurement

noise variance can be R̂tτ
�

= (1/τ)
∑tτ

�

i=t1
�

Ii . The derivation
of (24) can be found in Appendix B. Furthermore, it is noted
that R̂tτ

�
should not be introduced to the filter at each tτ

� for the
reason that a varying R̂tτ

�
leads to a varying ς�, thus causing

a smaller number of Itτ
�
. The pseudomeasurement-resistant

adaptive asynchronous Kalman filter is summarized in
Algorithm 1.

IV. EXPERIMENTAL VERIFICATION

A. Experiment Setup

As shown in Fig. 3, the experimental robot (Turtlebot3
Burger) is mounted with a camera looking downward to the
floor that is covered with red parallel auxiliary strips. All these
auxiliary strips are equally spaced by 0.5 m and parallel to the
X-axis. Other sensors, such as gyroscopes, are embedded on
the circuit board. The key information of the sensors is shown
in Table I.

The implementation of the proposed system is not demand-
ing to have expensive dedicated gyroscope or camera. As an
example, we use a customer-grade MEMS gyroscope, the type
of which is MPU6050 (manufactured by InvenSense, less
than U.S. $1 per chip), to perceive the yaw rate. The other
gyroscope, ADXRS453, has higher accuracy than MPU6050,
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TABLE I

INFORMATION OF THE SENSORS

so it is used to provide the truth values of heading angles
but not to participate in the proposed HDS. In addition,
we use a general-purpose full-color camera, the resolution of
which is 640 × 480 (less than U.S. $10 per piece), to capture
the floor image. All sensors work at 10 Hz. Algorithms are
coded by python and executed on an integrated development
environment called Spyder.

B. Evaluation of the Proposed HDS

1) Pseudomeasurement Isolation: The estimation results of
the proposed HDS within the first 500 sampling points are
shown in Fig. 4. The initial setup follows: ϑ̂0 = [90.5, 1.7]′,
Q = diag(0.382, 0.052), and R = 1.42. It is observed that
two measurements (the real one and pseudo one) exist, but
the pseudomeasurement can be isolated correctly all the time,
and consequently, the heading estimation tracks the truth with
high accuracy. As shown in Fig. 4(a), the visual heading
measurement is triggered by 25 times during the 500 sampling
points, and the heading estimation achieves the smallest root-
mean-square error (RMSE) of 0.98◦. As shown in Fig. 4(b)
and (c), the period without visual correction gets longer with
P̄ increasing, thus causing larger RMSEs. It can also be
observed, however, that the pseudomeasurements are always
outside the range of innovation boundary [−3(H P̃t� H ′ +
Rt� )

1/2,+3(H P̃t� H ′ + Rt� )
1/2], while the real ones inside,

provided that the visual heading measurement is triggered
in time. Finally, observing the visual measurements (blue
crossings), their intervals get larger and remain fixed over time
for the filtering convergence. Hence, we can conclude that
the accuracy increases with the frequencies of data sampling
and visual correction increasing and the stability could be
kept under timely visual correction, i.e., the frequency of
visual heading measurement should be higher than a critical
one, which could be calculated according to the recognizable
condition in Appendix A.

2) Noise Variance Estimation: At the sampling point of
about 11 000, we dim the light and loose the screws that fix
the downward-looking camera, thus causing an increase of
the noise variance of the visual heading measurement. The
initial P̄ = 22, R = 1.42, and the sliding window width
of R̂tτ

�
equals 500. If the noise variance R is not adjusted,

then the heading estimation RMSE is 2.71◦. After introducing
the noise variance estimator, the RMSE is reduced to 1.57◦.
The real R changes from 2 to 10 after the environmental
variation, which coincide approximately with the performance
of the R estimator, as shown in Fig. 5. It is also interesting

Fig. 4. Estimation results of the proposed HDS. The black curves (∼) stand
for the truth values, the red curves ( ) stand for the estimates, the blue
crossings ( ) stand for the measurements, and the gray areas stand for
the innovation boundaries. (a) Heading estimation results under P̄ = 12.
RMSE = 0.98◦. (b) Heading estimation results under P̄ = 22. RMSE =
1.56◦. (c) Heading estimation results under P̄ = 32. RMSE = 2.57◦.

to observe that the visual heading measurement is triggered
more and more frequently until R̂tτ

�
converges. According to

the recognizable condition of real measurement, if R increases
and the HDS works at a low correction rate, and then,
the heading estimation may be invalid due to the confusion
in distinguishing the real and pseudomeasurements. In our
design, however, an increasing R leads to a more frequent
visual correction, thus accelerating the convergence of R̂tτ

�
.

Because of the introduction of noise variance estimation,
the proposed HDS could adapt to illumination variation and
camera vibration.

C. Comparative Study

The experimental environment with interferences is estab-
lished by placing some ferromagnetic materials such as iron
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Fig. 5. Experiment results when introducing noise variance estimator. The
green curves stand for the estimated R. RMSE = 1.57◦.

Fig. 6. Results of comparative study with a magnetic HDS. The green curves
stand for the outputs of the magnetic HDS, whereas the red curves stand for
the outputs of the proposed nonmagnetic HDS. The dots in light gray stand
for the outputs of the magnetic compass, while the crossings in deep gray
stand for the recognized anomalies.

weights. A magnetic HDS is composed of a gyroscope
and a magnetic compass (usually a magnetometer) and out-
puts the heading estimation by fusing the readings of the
two complementary sensors. In [9], an advanced gyroscope-
magnetometer-integrated algorithm is proposed. The algorithm
could recognize and isolate the ferro- or electro-interference-
induced anomalies in magnetic compass. The comparative
results are shown in Fig. 6. In the case without interference,
the magnetic compass performs in a stable and accurate
manner as the top-left subfigure exhibited. As the bottom-left
subfigure exhibited, if the interference incurs a sudden vari-
ation to the magnetic compass, then these anomalies could
be recognized accurately and isolated, and thus, the heading
estimation is not affected. However, the bias is small or turns
to larger in a gradual way, and the anomalies cannot be recog-
nized. Because the Kalman filter tracks the measurements,
the unrecognized anomalies give rise to the failure of mag-
netic heading estimation, exactly as the up- and down-right
subfigures exhibited. In conclusion, the ferromagnetic and
electromagnetic interferences cause the potential performance
instability to a magnetic HDS that involves a magnetometer,
but do not affect the proposed nonmagnetic one.

V. CONCLUSION AND DISCUSSION

In this brief, a structurally simple yet efficient nonmagnetic
HDS has been developed, which can be used in the planar

indoor environment with abundant ferromagnetic and electro-
magnetic interferences, by the combination of gyroscope and
vision. As the experiments shown, such a visual-inertial HDS,
coupled with the proposed pseudomeasurement-resistant adap-
tive asynchronous Kalman filter, could isolate the pseudomea-
surement accurately and adapt to the environmental variation
by estimating the measurement noise variance. Furthermore,
as a nonmagnetic way to determine the robot heading,
the developed system provides an effective alternative solution
in the environments with abundant magnetic interferences.

Here are some discussions about the sensors. The main para-
meter of gyroscope is the root-mean-square (rms) noise. If rms
noise is smaller, then the gyroscopic heading estimation could
provide an accurate estimation in longer time, and therefore,
the visual measurement is triggered in lower frequency, which
means a lower computational burden. The main parameters of
camera are lens distortion and resolution. In fact, the resolution
does not affect the visual measurement significantly, but the
lens distortion does. The accuracy of visual measurement
decreases with lens distortion degree increasing. In conclusion,
a gyroscope with lower rms noise and a camera with lower
lens distortion are preferred in practice.

APPENDIX A

Define the innovations based on θ(†)
c,t� and θ

(
)
c,t� by

φ
(†)
t� = θ

(†)
c,t� − H ϑ̃t� (25a)

φ
(
)
t� = θ

(
)
c,t� − H ϑ̃t� = ±π + φ(†)

t� (25b)

which are Gaussian noises. φ
(†)
t� is a Gaussian white noise,

i.e., φ
(†)
t� ∼ N (0, H P̃t� H ′ + Rt� ), and φ

(
)
t� is a colored one,

i.e., φ(†)
t� ∼ N (±π, H P̃t� H ′ + Rt� ). Obviously, φ(†)

t� and φ
(
)
t�

are not independently and identically distributed but differ
by an offset ±π . If it is desired that |φ(†)

t� | < |φ(
)
t� | =

| ± π + φ
(†)
t� | holds, then |φ(†)

t� | ≤ π/2 is expected. Since
φ

(†)
t� ∼ N (0, H P̃t� H ′ + Rt� ), |φ(†)

t� | ≤ π/2 cannot hold always
but can hold in an extremely high probability. For example,
if π/2 ≥ 3(H P̃t� H ′+Rt� )

1/2, then P(|φ(†)
t� | ≤ π/2) ≥ 99.73%,

which means that the real measurement derived innovation
is greater than the pseudo one in a probability of 99.73%.
The probability can be increased by increasing the multiple
of (H P̃t� H ′ + Rt� )

1/2. Therefore, the recognizable condition is
π/2 ≥ β(H P̃t� H ′+ Rt� )

1/2, where β > 0 is a parameter which
is generally set as an integer greater than 3.

APPENDIX B

The difference series of θ
(�)
c,t� contain wg,k , ng,k , and nc,t� ,

which enables the estimation of noise variances. Consider the
following equations:

θt�+1 = θt� + T
t�+1−1∑

i=t�

(
δg,i − bg,i − ng,i

)
(26a)

θ
(�)
c,t�+1

= θt�+1 + nc,t�+1 (26b)

θ
(�)
c,t� = θt� + nc,t� (26c)
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and define δ̄g,t� = ∑t�+1−1
i=t�

δg,i , b̄g,t� = ∑t�+1−1
i=t�

bg,i , and n̄g,t� =∑t�+1−1
i=t�

ng,i . Subtracting (26b) from (26c) yields

θ
(�)
c,t�+1

− θ
(�)
c,t� = θt�+1 + nc,t�+1 − θt� − nc,t�

= T
(
δ̄g,t� − b̄g,t� − n̄g,t�

) + nc,t�+1 − nc,t� (27)

and then yields

Θ
(�)
c,t�+1

= θ
(�)
c,t�+1

− θ
(�)
c,t� − T δ̄g,t�

= nc,t�+1 − nc,t� − T b̄g,t� − T n̄g,t� (28)

which includes the gyroscopic and visual error terms. For
removing b̄g,t� , the backward difference operator ∇ is intro-
duced. If ς� = ς�−1, then we have

∇Θ
(�)
c,t�+1

= Θ
(�)
c,t�+1

− Θ
(�)
c,t�

= θ
(�)
c,t�+1

− 2θ
(�)
c,t� + θ

(�)
c,t�−1

− T δ̄g,t� + T δ̄g,t�−1

= nc,t�+1 − 2nc,t� + nc,t�−1 − T
(
b̄g,t� − b̄g,t�−1

)
− T

(
n̄g,t� − n̄g,t�−1

)
= nc,t�+1 − 2nc,t� + nc,t�−1 − T w̄g,t�−1

− T
(
n̄g,t� − n̄g,t�−1

)
(29)

where w̄g,t�−1 = ∑t�−1
j=t�−1

∑ j+ς�−1
i= j wg,i .

It is observed that (29) is the sum of three moving average
stochastic processes w̄g,t�−1 , n̄g,t� − n̄g,t�−1 , and nc,t�+1 −2nc,t� +
nc,t�−1 . Calculating the correlation functions of the left- and
right-hand sides of (29) yields

Λ = E

[
∇Θ

(�)
c,t� · ∇Θ

(�)
c,t�−2

]
= R (30)

where E denotes the mathematical expectation. Because
∇Θ

(�)
c,t�+1

only holds at ς� = ς�−1, ∇Θ
(�)
c,t� · ∇Θ

(�)
c,t�−2

only exists
at ς� = ς�−1 and ς�−3 = ς�−4. Define another time stamp
tτ
� ∈ {t�, � = 1, 2, . . .}, where τ = 1, 2, . . . When ς� = ς�−1

and ς�−3 = ς�−4, we increase τ by 1, assign the value of t�
to tτ

� , and let Itτ
�

= ∇Θ
(�)
c,t� ·∇Θ

(�)
c,t�−2

. Finally, the measurement
noise variance is estimated by

R̂tτ
�

= 1

n

tτ
�∑

i=tτ−n
�

Ii = 1

n

⎛⎝ tτ−1
�∑

i=tτ−1−n
�

Ii + Itτ
�
− Itτ−1−n

�

⎞⎠ (31)

= R̂tτ−1
�

+ 1

n

(
Itτ

�
− Itτ−1−n

�

)
when τ > n; otherwise, R̂tτ

�
= (1/τ)

∑tτ
�

i=t1
�

Ii .
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